Bare clusters derived from protein templates: Au25(+), Au38(+) and Au102(+).
نویسندگان
چکیده
A discrete sequence of bare gold clusters of well-defined nuclearity, namely Au25(+), Au38(+) and Au102(+), formed in a process that starts from gold-bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First-principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed-shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super-atom electronic gap. This shell-closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Au(n)(+) (n=25, 38, and 102) clusters.
منابع مشابه
Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.
Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd...
متن کاملBare Clusters Derived from Protein Templates : Au 25 + , Au 38 + and Au 102 + Ananya
Clusters of noble metals, particularly gold, with precise nuclearity (number of atoms) and overall molecular composition continue to be a topic of intense experimental and theoretical research endeavors. These efforts aim at understanding the basic factors, such as electronic structure, atomic packing, and adsorbed layers that underlie the appearance of certain structural motifs and control the...
متن کاملInfra-red spectroscopy of size selected Au25, Au38 and Au144 ligand protected gold clusters.
Through the discovery of ligand protected metal clusters with cores of a precise number of atoms, the exploration of the third dimension of the periodic table for fundamental research and also for applications has become less remote. So far, the exact number of metal atoms in the core has been determined unambiguously only using mass spectrometry and single crystal X-ray diffraction. Gold clust...
متن کاملChemically induced magnetism in atomically precise gold clusters.
Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understandin...
متن کاملChirality in thiolate-protected gold clusters.
Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2013